Extracts from Fifty years of wildland fire science in Canadaby Sean C.P. Coogan et al. 2021. Can. J. For. Res. 51: 283–302 (References removed, bolding inserted):
“From an economic perspective, wildland fire competes with timber harvesting over much of the managed forest, causing significant uncertainty and disruption when determining sustainable harvest levels. Thus, fire suppression is strongly linked to forest management, and compelling evidence shows fire suppression reduces the area burned in intensively managed and protected forest zones in Canada. “…. Much progress has been made to assess a priori and a posteriori considerations when defining sustainable harvest levels under different fire regimes, For example, integrated forest and fire management models address complex questions and trade-offs among fire protection, timber production, and old forest conservation, yielding potential net benefits of fire management.. Salvage logging after fire is an alternate solution that has increased considerably to compensate for the loss of timber, but with negative consequences to biodiversity Projecting forward, simulations suggest that it will become even more difficult to maintain current timber harvesting levels in the future under a warmer climate and with projected increases in area burned. Compounding this problem, an emerging consequence of successful fire suppression is increased flammability of the fuel in the wildland-urban interface of communities across Canada. “Closer integration of forest and fire management is essential given their interdependencies and has become increasingly urgent as the cumulative effects of industrial forestry and fire on forested landscape biodiversity and productivity become evident. An important advance near the end of the 20th century was the widespread adoption of ecosystem-based forest management as a new paradigm for sustainability, which places greater emphasis on maintaining non-timber values and ecological integrity. In this framework, historical disturbance regime attributes provide reference conditions for ecosystem-based silviculture and ecological restoration, with fire regimes dominating many Canadian forests . For example, inspired by research on spatial patterns of fire skips, stand-scale retention of living trees in variable densities and distributions during forest harvesting is now incorporated in ecosystem-based management widely practiced in the boreal forests of Canada and internationally . However, creating landscape-scale spatial patterns consistent within the historical variation resulting from fire has proven more challenging . “Most recently, forest and fire management have shifted to emphasize resilience ‹ i.e., the capacity of an ecosystem to return to the same general structure, composition, and feedback processes following disturbance. In this context, management to reduce fire risk and hazard across a range of scales is essential for long-term sustainability of forest ecosystem function and resource management. At stand scales, uneven-aged silvicultural systems traditionally used to promote tree growth and enhance wildlife habitat are being renewed as fuel mitigation treatments to reduce wildland fire risk. Particular emphasis is placed on the wildland-urban interface, where treatments tailored to specific forest types have potential local benefits. At landscape scales, strategic location and configuration of fuel treatments aim to modify fire behaviour and mitigation of the wildland-urban interface. Across spatial scales, proactive measures include modifying forest operations and increasing prescribed burning to reduce hazardous logging residuals and regenerating forests that include deciduous species to mitigate fire hazard. Importantly, the growing recognition of the ecological benefits of fire has enabled the use of managed wildland fire, in which fires that do not threaten lives or critical infrastructure are permitted to burn within predetermined boundaries for beneficial ecological effects and cost management.” |
Why Thinning Forests is Poor Wildfire Strategy On www.westernwatersheds.org/.”…So is there any place for forest thinning/fuel reductions? There is. But it should be limited to the areas immediately surrounding homes and communities. Since one can’t predict where a fire will start and burn, thinning forest willy-nilly is a waste of effort. Not only are most thinning projects done improperly, most are done for the wrong reasons and lose taxpayer money to boot. “No one wants houses and towns to burn up. Focusing thinning on the immediate area around structures is cost effective. It is also easier to maintain fuel reductions near homes because access is easy, and even though there are negatives with any logging operation, by focusing those impacts to the area immediately around homes and towns—places already impacted by human use—we minimize those negative ecological impacts. “Thinning trees/shrubs near homes, combined with a reduction in home flammability by installation of metal roofs, removal of flammable materials adjacent to homes, and other measures can virtually guarantee a home will survive even a severe high intensity forest fire. “Thinning forests for fuels reductions, unless strategically done, is a waste of taxpayer funds, and has significant ecological impacts. It is unwise forest policy.” |